GS 77J01X07-01E

General

This plug-in type universal-computing unit receives $D C$ current or DC voltage signals, applies various computing functions to them, and then converts them into isolated DC current or DC voltage signals.

- Output-2 can be selected from DC voltage signal, DC current signal, communication function (RS-485), or contact output (2 relay contacts).
- Various parameters such as input range and computation programs can be set and modified using a PC (VJ77) or Handy Terminal (JHT200 or the like).

Model and Suffix Codes

Input

Input Signal: 1 DC current of voltage signal Input Range:

Code A: $\quad 0$ to +50 mA DC , span is 5 mA or more
Code 1: $\quad-10$ to +10 V DC, span is 0.1 V or more Input Resistance:
DC current signal: 100Ω (with external shunt resistor)
DC voltage signal: $1 \mathrm{M} \Omega(100 \mathrm{k} \Omega$ when power off $)$
\square Output

1. Output-1

Output Signal	Output Resistance	Permissible Load Resistance
1 to 5 V DC	1Ω or less	$2 \mathrm{k} \Omega$ or more
4 to 20 mA DC	$500 \mathrm{k} \Omega$ or more	750Ω or less

- Custom Order Output Signal

2 to $10 \mathrm{~mA} \mathrm{DC}, 1$ to $5 \mathrm{~mA} \mathrm{DC}, 0$ to 20 mA DC , 0 to $16 \mathrm{~mA} \mathrm{DC}, 0$ to $10 \mathrm{~mA} \mathrm{DC}$,0 to 1 mA DC 0 to $10 \mathrm{mV} \mathrm{DC}, 0$ to $100 \mathrm{mV} \mathrm{DC}, 0$ to 1 V DC , 0 to 10 V DC, 0 to $5 \mathrm{~V} \mathrm{DC},-10$ to +10 V DC

2. Output -2

- Analog Output

Output Signal	Output Resistance	Permissible Load Resistance
1 to 5 V DC	1Ω or less	$2 \mathrm{k} \Omega$ or more
4 to 20 mA DC	$500 \mathrm{k} \Omega$ or more	350Ω or less

- Communication Function

This unit can be connected to a PC, graphic panel,
YOKOGAWA programmable controller
FA-M3, or programmable controllers of other manufacturers.
Standards: EIA RS-485
Maximum number of connectable controllers:

$$
31 \text { controllers }
$$

Maximum communication distance: 1200 m

Communication method: 2-wire half duplex, start-stop synchronization, non-procedural
Communication rate: 1200, 2400, 4800, 9600 bps
Data length: 8,7 bits
Stop bit: 1,2 bits
Parity: Even parity, odd parity, or none
Communication protocol: PC-link, PC-link with SUM, MODBUS ASCII, MODBUS RTU, or LADDER
PC-link communication: Communication protocol with a
PC, graphic panel, UT link module of FA-M3
MODBUS communication: Communication protocol with a PC (SCADA).
Ladder communication: Communication protocol with ladder communication module of FA-M3 and programmable controller of other manufacturers

- Contact Output

Output signal: 2 relay contacts
Contact capacity: 30 V DC, 1 A

Items Available to Be Set

The following items can be set through a PC (VJ77 PC-based parameters setting tool) or Handy Terminal:
Input range, function code, computation program, address number, baud rate, parity, data length, stop bit and protocol

Standard Performance

Accuracy rating: $\pm 0.1 \%$ of span
However accuracy is limited in the following case according to the input ranges:
Input range is -10 to +10 V (H range), span is under 5 V ; accuracy $(\%)= \pm 0.1 \% \times 5 \mathrm{~V} /$ input span [V]
Input range is -5 to +5 V (M range), span is under 2.5 V ; accuracy $(\%)= \pm 0.1 \% \times 2.5 \mathrm{~V} /$ input span $[\mathrm{V}]$
Input range is -1 to +1 V (L range), span is under 0.5 V ; accuracy $(\%)= \pm 0.1 \% \times 0.5 \mathrm{~V} /$ input span $[\mathrm{V}]$
When current input, apply [input range \times input resistance] to the above, and add 0.1% of resistance error.
Computation cycle: 0.1 second
Response speed: $500 \mathrm{~ms}, 63 \%$ response (10 to 90% change of range)
Effect of Power Supply Voltage Fluctuation: $\pm 0.1 \%$ or less of span for power supply voltage fluctuation of 85 to $264 \mathrm{~V} \mathrm{AC}(47$ to 63 Hz$) / \mathrm{DC}$ and 12 to 36 V DC.
Effect of Ambient Temperature Change: $\pm 0.2 \%$ or less of span for change of $10^{\circ} \mathrm{C}$

Safety and EMC Standards

The followings will be acquired.

Safety:

Conforms to IEC1010-1: 1990 and EN61010-11: 1993.
Certified for CSA1010
CSA1010 category: CAT II (IEC1010-1)
Certified for UL508
EMC Standards:
Conforms to the following EMC standards.
EN55011: 1991 Class A Group1 for EMI (emissions)
EN50082-2: 1995 for EMS (immunity)
The above conformed instrument is only for voltage of 15 to 30 V DC $\cdots(\pm 20 \%)$.

Power Supply and Isolation

Power Supply Rated Voltage:
100 to $240 \mathrm{~V} \mathrm{AC} / \mathrm{DC} \approx 50 / 60 \mathrm{~Hz}$ 15 to 30 V DC ...
Power Supply Input Voltage: 100 to $240 \mathrm{~V} \mathrm{AC} / \mathrm{DC}=$ $(-15,+10 \%) 50 / 60 \mathrm{~Hz}$ 15 to 30 V DC $-(\pm 20 \%)$
Power Dissipation: 24 V DC $2.5 \mathrm{~W}, 110$ V DC 2.6 W 100 V AC 5 VA, 200 V AC 6.7 VA
Insulation Resistance: $100 \mathrm{M} \Omega / 500 \mathrm{~V}$ DC between input, output-1, output-2, power supply and ground mutually
Withstand Voltage: 2000 V AC / minute between input, (output-1, output-2), power supply, and ground mutually
1000 V AC / minute between input and output-2 when contact output
1000 V AC / minute between output-1 and output-2

Environmental Conditions

Temperature: 0 to $50^{\circ} \mathrm{C}$
Humidity: 5 to 90% RH (no condensation)
Ambient Condition: Avoid installation in such environments as corrosive gas like hydrogen sulfide, dust, sea breeze and direct sunlight Installation altitude 2000 m or less above sea level.

Mounting and Appearance

Construction: Compact plug-in type
Material: Modified Polyphenylene Oxide (Case body)
Mounting Method: Wall, DIN rail, or dedicated VJ mounting base mountings (only when Output-2 is analog output.)
Connection Method: M3 screw terminal
External Dimension: $29.5 \times 76 \times 124.5 \mathrm{~mm}(\mathrm{~W} \times \mathrm{H} \times \mathrm{D})$
Weight: Approx. 170 g

Standard Accessories

Tag number label: 1
Range label: 1
Shunt resistor: 1 (when current input is specified)

Items to Specify When Ordering

- Model and suffix codes

The input range and fixed constants for each computation function are set as specified before shipment.

Factory Setting

Factory settings are as follows:

- Input range: 4 to 20 mA DC
- Fixed constants: See the functional specification.
- When output-2 is specified as communication output
- Address No.: 01
- Baud rate: 9600 bps
- Parity: Even
- Data length: 8 bits
- Stop bit: 1 bit
- Protocol: PCLINK

Terminal Arrangement

Terminal No.	Signal	Output-2 analog output	Output-2 communication output	Output-2 contact output
1	Input	$(+)$		
2	Output-2	$(+)$	B (+)	RLY1
3	Input	$(-)$		
4		Not connected		
5	Output-2	$(-)$	A (-)	COM
6	Output-2	Not connected	COM	RLY2
7	Output-1		$(+)$	
8	GND	GND		
9	Output-1	$(-)$		
10	Power supply	$($ L+)		
11	Power supply			

Note 1: With the one-output type, terminals for Output-2 are not connected.

■ Block Diagram

External Dimensions

Note 2: Only when output-2 is contact output.

Function Specifications

- VJX7-A Free Program

This computing unit is used to meet individual applications by programming the available commands using the Handy Terminal.

Initial setting

- Program: Outputs the value equivalent to the input.
- VJX7-B Moving Average Computation

This computing unit outputs the average of 40 input data (X) sampled at intervals of one-fortieth of the moving-average time (L). At the next sampling, the unit discards the oldest data and outputs the average of the 40 data, repeating the same operation. The output between samplings is smoothed out by interpolation.
e.g.

Note: For the moving average times at 1, 2 and 3 second, the number of samplings is 10 , 20 and 30, respectively.

Setting range of moving-average time:
0 to 320,000 seconds with 4 significant digits. Minimum unit is 1 second (however, 0.1 second is possible for 4 seconds or shorter).
To use a first-order lag filter for input (X), set the first-order lag time constant (T).

Setting range of time constant: 0 to 799.0 seconds; minimum unit is 0.1 second.
Accuracy of moving average and time constant setting:
$(\pm 5.0 \%$ of set value) ± 1 second

Ordering information and initial settings

- Moving-average time: 10 sec
- First-order lag time constant: 0 sec

- VJX7-C Dead Time Computation

This computing unit stores the input values (X) sampled at intervals of one-fortieth of the dead time (L) into 40 buffers and outputs data (output-1 $=$ Y1, output- $2=\mathrm{Y} 2$) by orderly shifting them after the dead time has elapsed. However, for the dead times of 3,2 , and 1 second, the numbers of samplings is 30,20 , and 10 , respectively. The output between samplings is smoothed by interpolation.

$$
Y 1=Y 2=\frac{e^{-L S}}{1+T S} X
$$

e.g. $\mathbf{0 \%} \rightarrow \mathbf{1 0 0 \%}$ step input

Setting range of dead time: 0 to 320,000 seconds with 4 significant digits. Minimum unit is 1 second (however, 0.1 second is possible for 4 seconds or shorter.)
To use a first-order lag filter for input (X), set the first-order lag time constant (T).
Setting range of time constant: 0 to 799.0 seconds
Accuracy of dead time and time constant setting: $(\pm 5.0 \%$ of set value) ± 1 second

Ordering information and initial settings

- Dead time: 10 sec
- First-order lag time constant: 0 sec

VJX7-D First-order Lag Computation

This computing unit provides a first-order lag computation on input (X) with a time constant (T) and outputs the result (output$1=\mathrm{Y} 1$, output-2 = Y2).

$$
Y 1=Y 2=\frac{e^{-L S}}{1+T S} X
$$

e.g. $\mathbf{0 \%} \rightarrow \mathbf{1 0 0 \%}$ step input

Setting range of time constant: 0 to 799.0 seconds; minimum unit is 0.1 second.
Accuracy of time constant setting: $(\pm 5.0 \%$ of set value $) \pm 1$ second

Ordering information and initial setting

- First-order lag time constant: 10 sec

- VJX7-E First-order Lead Computation

This computing unit provides a first-order lead computation on input (X) with a time constant (T) and outputs the result (output$1=\mathrm{Y} 1$, output- $2=\mathrm{Y} 2$).

$$
Y 1=Y 2=\left(1+\frac{T S}{1+T S}\right) X
$$

e.g. $\mathbf{0 \%} \rightarrow \mathbf{5 0 \%}$ step input

Setting range of time constant: 0 to 799.0 seconds; minimum unit is 0.1 second.
Accuracy of time constant setting: $(\pm 5.0 \%$ of set value $) \pm 1$ second

Ordering information and initial setting

- First-order lead time constant: 10 sec
- VJX7-F Uniform-speed Response (Velocity Limiter)

This computing unit limits the input (X) velocity at the ascending velocity limit for a positive change and at the descending velocity limit for a negative change, and outputs the limited value (output-1 $=\mathrm{Y} 1$, output- $2=\mathrm{Y} 2$). When the input velocity (slope) is no more than the limit value, the unit outputs the input as is.
e.g. $\mathbf{0 \%} \rightarrow \mathbf{1 0 0 \%} \rightarrow \mathbf{0 \%}$ step input

Setting range of velocity limit value: 0.1% to $699.9 \% /$ minute; minimum unit is $0.1 \% /$ minute.
Setting the limit at 700.0% /minute or above does not limit the input, so the unit simply outputs the input as is (i.e., works as an open limit function).
Accuracy of velocity limit setting: $(\pm 5.0 \%$ of set value $) \pm 1 \% /$ minute
Ordering information and initial settings

- Ascending velocity limit: $100 \% /$ minute
- Descending velocity limit: $100 \% /$ minute

- VJX7-G Limiter

This computing unit serves as an ordinary converter as long as the input (X) is within the upper and lower limits. When the input exceeds the limit, the unit outputs the signal that corresponds to the limit value (output- $1=\mathrm{Y} 1$, output- $2=\mathrm{Y} 2$).

Setting range of upper and lower limit values: -6.0% to 106.0%; minimum unit is 0.01%.
However, if the setting is made so that the upper limit < lower limit, the unit outputs the upper limit value.

Ordering information and initial settings

- Upper limit value: 100%
- Lower limit value: 0%

- VJX7-H Velocity Computation

This computing unit calculates the input velocity by subtracting the input of the last velocity computation $\left(\mathrm{X}_{\mathrm{L}}\right)$ form the present input (X). The unit then adds a 50% bias to one-half of the obtained velocity and outputs the result (output-1 = Y1, output-2 $=\mathrm{Y} 2$).
The output obtained will be as follows:
When there is no change in input: 50%
When the input has increased: 50% or more
(100% when $\mathrm{X}-\mathrm{X}_{\mathrm{L}}=100 \%$)
When the input has decreased: 50% or less
(0% when $X-X_{L}=-100 \%$)

$$
Y 1=Y 2=\frac{X-X_{L}}{2}+50 \%
$$

Setting range of velocity computation time: 0 to 320,000 seconds with 4 significant digits. Minimum unit is 1 second (however, 0.1 second is possible for 4 seconds or shorter.)
To use a first-order lag filter for input (X), set the first-order lag time constant (T).

Setting range of time constant: 0 to 799.0 seconds; minimum unit is 0.1 second.
Accuracy of velocity computation time and time constant settings: $(\pm 5.0 \%$ of set value) ± 1 second

Ordering information and initial settings

- Velocity computation time (L): 20 sec
- First-order lag time constant (T): 0 sec

- VJX7-J Linearizer

This computing unit gives an optional relationship between the input (X) and output (output-1 $=\mathrm{Y} 1$, output- $2=\mathrm{Y} 2$) signals using an optional line-segment function. The line-segment function has 21 breakpoints, which each gives an input-output relationship as a percentage (\%).

Breakpoint (21 points) setting conditions:
For input: $\quad-6.0 \% \%$ X0 to $\mathrm{X} 20 \% 106.0 \%$; minimum unit is 0.01%.
$\mathrm{X} 0<\mathrm{X} 1<\mathrm{X} 2<\cdots<\mathrm{X} 20$
For output: $-6.0 \% \% \mathrm{Y} 0$ to $\mathrm{Y} 20 \% 106.0 \%$; minimum unit is 0.01%.
When input\% $\mathrm{X} 0, \mathrm{Y} 0$ is output. When input $\geqq \mathrm{X} 20$, Y20 is output.
Computation accuracy: $\pm 0.1 \%$ (when line-segment gain is 1 or less)

Ordering information and initial setting

- Breakpoint data (21 points at maximum): Write down all the data of X0 to X20, Y0 to Y20. If not specified, the unit will be shipped with the breakpoint data set so that the input equals the output.

VJX7-K Ratio Setting

This computing unit sets the ratio by the following expression.
$\mathrm{Y} 1=\mathrm{Y} 2=\mathrm{K} 1 \times(\mathrm{X}+\mathrm{A} 1)+\mathrm{A} 2$
where $\quad \mathrm{Y}$: Output-1 signal (\%)
Y2: Output-2 signal (\%)
$\mathrm{X}: \quad$ Input signal (\%)
K1: Ratio (no unit)
A1, A2: Bias (\%)
Setting range of ratio: -320 to 320 with 4 significant digits; minimum unit is 0.00001 .
Setting range of bias: $-32,000 \%$ to $32,000 \%$ with 4 significant digits; minimum unit is 0.001%.
Computation accuracy: $\pm 0.1 \%$ (when $\mathrm{K} 1=1, \mathrm{~A} 1=\mathrm{A} 2=0 \%$)

Ordering information and initial settings

- Ratio (K1): 1
- Bias (A1): 0\%
- Bias (A2): 0\%

